56 research outputs found

    von Neumann-Morgenstern and Savage Theorems for Causal Decision Making

    Full text link
    Causal thinking and decision making under uncertainty are fundamental aspects of intelligent reasoning. Decision making under uncertainty has been well studied when information is considered at the associative (probabilistic) level. The classical Theorems of von Neumann-Morgenstern and Savage provide a formal criterion for rational choice using purely associative information. Causal inference often yields uncertainty about the exact causal structure, so we consider what kinds of decisions are possible in those conditions. In this work, we consider decision problems in which available actions and consequences are causally connected. After recalling a previous causal decision making result, which relies on a known causal model, we consider the case in which the causal mechanism that controls some environment is unknown to a rational decision maker. In this setting we state and prove a causal version of Savage's Theorem, which we then use to develop a notion of causal games with its respective causal Nash equilibrium. These results highlight the importance of causal models in decision making and the variety of potential applications.Comment: Submitted to Journal of Causal Inferenc

    Detecting dressing failures using temporal–relational visual grammars

    Get PDF
    Evaluation of dressing activities is essential in the assessment of the performance of patients with psycho-motor impairments. However, the current practice of monitoring dressing activity (performed by the patients in front of the therapist) has a number of disadvantages when considering the personal nature of dressing activity as well as inconsistencies between the recorded performance of the activity and performance of the same activity carried out in the patients’ natural environment, such as their home. As such, a system that can evaluate dressing activities automatically and objectively would alleviate some of these issues. However, a number of challenges arise, including difficulties in correctly identifying garments, their position in the body (partially of fully worn) and their position in relation to other garments. To address these challenges, we have developed a novel method based on visual grammars to automatically detect dressing failures and explain the type of failure. Our method is based on the analysis of image sequences of dressing activities and only requires availability of a video recording device. The analysis relies on a novel technique which we call temporal–relational visual grammar; it can reliably recognize temporal dressing failures, while also detecting spatial and relational failures. Our method achieves 91% precision in detecting dressing failures performed by 11 subjects. We explain these results and discuss the challenges encountered during this work

    Multi-label Classification for Tree and Directed Acyclic Graphs Hierarchies

    Get PDF
    Abstract. Hierarchical Multi-label Classification (HMC) is the task of assigning a set of classes to a single instance with the peculiarity that the classes are ordered in a predefined structure. We propose a novel HMC method for tree and Directed Acyclic Graphs (DAG) hierarchies. Using the combined predictions of locals classifiers and a weighting scheme according to the level in the hierarchy, we select the "best" single path for tree hierarchies, and multiple paths for DAG hierarchies. We developed a method that returns paths from the root down to a leaf node (Mandatory Leaf Node Prediction or MLNP) and an extension for Non Mandatory Leaf Node Prediction (NMLNP). For NMLNP we compared several pruning approaches varying the pruning direction, pruning time and pruning condition. Additionally, we propose a new evaluation metric for hierarchical classifiers, that avoids the bias of current measures which favor conservative approaches when using NMLNP. The proposed approach was experimentally evaluated with 10 tree and 8 DAG hierarchical datasets in the domain of protein function prediction. We concluded that our method works better for deep, DAG hierarchies and in general NMLNP improves MLNP

    Estimating functional connectivity symmetry between oxy- and deoxy-haemoglobin: implications for fNIRS connectivity analysis

    Get PDF
    Functional Near InfraRed Spectroscopy (fNIRS) connectivity analysis is often performed using the measured oxy-haemoglobin (HbO2) signal, while the deoxy-haemoglobin (HHb) is largely ignored. The in-common information of the connectivity networks of both HbO2 and HHb is not regularly reported, or worse, assumed to be similar. Here we describe a methodology that allows the estimation of the symmetry between the functional connectivity (FC) networks of HbO2 and HHb and propose a differential symmetry index (DSI) indicative of the in-common physiological information. Our hypothesis is that the symmetry between FC networks associated with HbO2 and HHb is above what should be expected from random networks. FC analysis was done in fNIRS data collected from six freely-moving healthy volunteers over 16 locations on the prefrontal cortex during a real-world task in an out-of-the-lab environment. In addition, systemic data including breathing rate (BR) and heart rate (HR) were also synchronously collected and used within the FC analysis. FC networks for HbO2 and HHb were established independently using a Bayesian networks analysis. The DSI between both haemoglobin (Hb) networks with and without systemic influence was calculated. The relationship between the symmetry of HbO2 and HHb networks, including the segregational and integrational characteristics of the networks (modularity and global efficiency respectively) were further described. Consideration of systemic information increases the path lengths of the connectivity networks by 3%. Sparse networks exhibited higher asymmetry than dense networks. Importantly, our experimental connectivity networks symmetry between HbO2 and HHb departs from random (t-test: t(509) = 26.39, p < 0.0001). The DSI distribution suggests a threshold of 0.2 to decide whether both HbO2 and HHb FC networks ought to be studied. For sparse FC networks, analysis of both haemoglobin species is strongly recommended. Our DSI can provide a quantifiable guideline for deciding whether to proceed with single or both Hb networks in FC analysis
    corecore